近年來大數據技術的快速發展深刻改變了我們的生活、工作和思維方式。大數據研究專家舍恩伯格指出,大數據時代,人們對待數據的思維方式會發生如下三個變化:第一,人們處理的數據從樣本數據變成全部數據;第二,由于是全樣本數據,人們不得不接受數據的混雜性,而放棄對精確性的追求;第三,人類通過對大數據的處理,放棄對因果關系的渴求,轉而關注相關關系。事實上,大數據時代帶給人們的思維方式的深刻轉變遠不止上述三個方面。筆者認為,大數據思維最關鍵的轉變在于從自然思維轉向智能思維,使得大數據像具有生命力一樣,獲得類似于“人腦”的智能,甚至智慧。 總體思維 社會科學研究社會現象的總體特征,以往采樣一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴于采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。正如舍恩伯格總結道:“我們總是習慣把統計抽樣看作文明得以建立的牢固基石,就如同幾何學定理和萬有引力定律一樣。但是,統計抽樣其實只是為了在技術受限的特定時期,解決當時存在的一些特定問題而產生的,其歷史不足一百年。如今,技術環境已經有了很大的改善。在大數據時代進行抽樣分析就像是在汽車時代騎馬一樣。在某些特定的情況下,我們依然可以使用樣本分析法,但這不再是我們分析數據的主要方式。”也就是說,在大數據時代,隨著數據收集、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不采用樣本研究方法,相應地,思維方式也應該從樣本思維轉向總體思維,從而能夠更加全面、立體、系統地認識總體狀況。 容錯思維
在小數據時代,由于收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會“南轅北轍”,因此,就必須十分注重精確思維。然而,在大數據時代,得益于大數據技術的突破,大量的非結構化、異構化的數據能夠得到儲存和分析,這一方面提升了我們從數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。舍恩伯格指出,“執迷于精確性是信息缺乏時代和模擬時代的產物。只有5%的數據是結構化且能適用于傳統數據庫的。如果不接受混亂,剩下95%的非結構化數據都無法利用,只有接受不精確性,我們才能打開一扇從未涉足的世界的窗戶”。也就是說,在大數據時代,思維方式要從精確思維轉向容錯思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。 |
![]() |
中國鍛壓網官方微信:掃一掃,立即關注!
關注"中國鍛壓網",獲取獨家行業新聞資訊。 添加方法1: 在“添加好友”中直接添加微信賬號:chinaforge 添加方法2: 微信中掃描左側的二維碼 |